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Abstract

In this study, a technique for estimating vertical profiles of precipitation from multifrequency,

multiresolution active and passive microwave observations is investigated using both simulated and

airborne data. The technique is _pplicable to the Tropical Rainfall Measuring Mission (TRMM)

satellite multi-frequency active and passive observations. These observations are characterized by

various spatial and sampling resolutions. This makes the retrieval problem mathematically more

difficult and ill-determined becm _se the quality of information decreases with decreasing resolution.

A model that, given reflexivity profiles and a small set of parameters (including the cloud

water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor

properties), simulates high-resoh_tion brightness temperatures is used. The high-resolution simulated

brightness temperatures are con,,olved at the real sensor resolution. An optimal estimation procedure

is used to minimize the differences between simulated and observed brightness temperatures. The

retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth

Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and

reflectivities and airborne obser_ ations are convolved at the resolution of the TRMM instruments and

retrievals are performed and anal yzed relative to the reference data used in observations' synthesis. An

illustration of the possible use of the technique in satellite rainfall estimation is presented through an

application to TRMM data.

The study suggests improvements in combined active and passive retrievals even when the

instruments' resolutions are sign _ficantly different. Future work needs to better quantify the retrievals'

performance, especially in conne:ction with satellite applications, and the uncertainty of the models

used in retrieval.
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1. Introduction

Paststudiesdemonstrateclvariouswaysin which passivemicrowaveinformationcancontribute

to the improvementof airborneandsatellite-borneradarprecipitationestimates.A straightforward

optionto includeradiometerinfc.rmationin algorithmsfor precipitationestimationfrom space-borne

andairborneradarobservations,_uchasthoseprovidedby theTropicalRainfallMeasuringMission

(TRMM) precipitationradar(PR),is theestimationof thePathIntegratedAttenuation(PIA) atthe

radar'sfrequencyfrom radiomet,'_robservations.BecausethePIA affectstheradarprecipitation

estimatesin atwofold way,throt_ghthereflectivity profile correctedfor attenuationbut alsothrough

thereflectivity-precipitationrelationshipsthatareupdatedasafunctionof PIA, theaccuracyof the

PIA estimationconsiderablyaffectstheprecipitationestimation. Estimatesof PIA basedexclusively

on thereflectivity profilesarequiteuncertaindueto variationsin thedropsizedistributions(DSD) and

independentconsiderationsneedto be takeninto accountto reducethePIA uncertaintyto acceptable

levels. Meneghinietal. 2000)t_sedaSurfaceReferenceTechnique(SRT)to estimatethePIA, while

Smithet al. (1997)inspiredby tte work of Weinmanet al. (1990)derivedformulationsto estimatethe

PIA from 10GHz radiometerobservations.Thebenefit of usingradiometerbasedestimatesof PIA in

radarprofiling algorithmshasnct beenfully investigated,but atleasttheoreticallytheradar-radiometer

estimatesmayleadto betterresultsthantheSRTestimatesalone. Anotherwayof includingpassive

observationsin radarrainprofili lg algorithmsis by iterativelymodifying theradarretrievalsasa

functionof asmallnumberof parameters(ableto providealargenumberof possiblesolutionsgivena

profile of attenuatedreflectivity) until thedifferencesbetweencalculatedandobservedbrightness

temperaturesreacha certainminimum. This kind of approachwasexploredby GrecuandAnagnostou

(2002). Similar,butnot fully equivalent,approacheswereinvestigatedby ScholsandWeinman

(1994),Olsonet al. (1997),Meneghiniet al. (1997),andMarzanoet al. (1999).



One common characterisl ic of most combined approaches is that they were investigated using

airborne data, assuming similar iesolutions and coincidence for all observations. Other approaches

such as the combined TRMM al_;,,orithm (Haddad et al. 1997) account for the differences in sensors'

resolutions but have not been ful ly characterized with respect to radar-only retrievals. In particular, the

combined TRMM algorithm use:_ a priori brightness temperature-attenuation relationships independent

of the vertical variability of the actual profiles being retrieved (Haddad et al. 1997) and, consequently,

might not completely benefit from the information provided by passive observations. This justifies the

investigation of a more general 1strieval technique from passive and active observations at the TRMM

sensors' resolutions.

The purpose of this paper is to provide such an investigation. The study is based on both cloud

model simulated and airborne data. That is, cloud model produced databases are used to generate

observations similar to satellite _,bservations, in particular TRMM' s, and a combined technique, which

is an extension of that formulate,] by Grecu and Anagnostou (2002), is used to retrieve precipitation

profiles from active and passive observations. The combined technique is based on radar and

radiometer simulation models al,d uses an optimal estimation formulation to minimize the differences

between observations and simulations of brightness temperatures. A more detailed description is given

in the next section. The retrievals are compared to the actual profiles used in the observation synthesis,

and the retrieval performance is assessed based on these comparisons. Similarly, airborne data from

the Fourth Convection and Moisture Experiment (CAMEX-4) are used to generate TRMM-like

observations. The combined technique is applied to these observations and indirect criteria, such as

the agreement between simulate,] and observed brightness temperatures at the initial airborne

instruments' resolutions, and thc: agreement between retrieved and SRT PIAs, are used to analyze the

technique's performance. The potential use of the technique is illustrated using an application to actual
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TRMM observations.This appli-afionis meantto give somesenseof thetechnique'sutility in

satelliteapplications,but significantadditionalworkneedsto bedonebeforesomedefiniteconclusions

maybedrawn.

Thepaperis organizedasfollows. Thenextsectiondescribesthemathematicalformulationof

thecombinedtechnique.SectioT3containsresultsfrom asimulationexperiment,i.e. theapplication

of thetechniqueto syntheticobservationsgeneratedusingcloudmodeldataandtheanalysisof the

retrievals. In Section4, thetechniqueis appliedto airbornedataoriginatingfrom CAMEX-4. The

applicationto TRMM datais presentedin section5, andconclusionsandrecommlendationsfor future

work areprovidedin Section6.

2. Formulation of the combined retrieval technique

The retrieval technique is an extension of the one formulated by Grecu and Anagnostou (2002).

The basic radar and radiometer modeling components are essentially the same, the major difference

being an adaptation of these basic components to be consistent with the characteristics of TRMM's

sensors. In the earlier work, eact_ precipitation profile could be retrieved independently of other

precipitation profiles. In the current formulation, given the overlapping of passive sensor footprints, a

simultaneous retrieval of a large number of profiles (encompassing large areas of precipitation) must

be considered. This will become, more evident in subsequent paragraphs.

As remarked by Grecu al _d Anagnostou (2002), although the most rigorous formulation

requires the quantification and inclusion of all radar observational and modeling uncertainties, a

simplified formulation is preferable because it makes the solution computationally more tractable.

Consequently, we consider for emh precipitation profile a small set of parameters that influence the

radar retrieved profiles or the brightness temperature simulations. This set includes the intercept of the



DSD, N O, a variable describing the cloud water content, Xc, and the ratio of snow to graupel content

above the melting layer, Xs. The_e are obviously other variables that influence the radar retrievals and

the radiative transfer calculations;, but their effect is somewhat smaller. Consequently, to make the

problem better posed (with a more specific solution) we choose not to include the less significant

variables in the formulation.

The drop sizes are assumed to follow a normalized gamma distribution (Testud et al. 2000).

This kind of formulation is flexible and allows a simple parameterization of variability in relationships

between various precipitation-related variables. The cloud water content variable, Xc, is a

proportionality parameter that m,altiplied by a mean cloud profile provides the vertical distribution of

cloud water content. The ratio of snow to graupel content, denoted Xs, is introduced to account for the

impact of frozen hydrometeor density on the scattering properties.

Given these variables, i.e. X R = {N o , x c , x S}, and the reflectivity profiles, we simulate

brightness temperatures at the ra.tar resolution. Then, we convolve the brightness temperatures at the

resolution of the TRMM sensors, and based on the differences between simulations and observations,

we update the values of XR. Thc radar retrieval algorithm and the radiative transfer model are fully

described in Grecu and Anagnostou (2002). A bayesian formulation, similar to that in Grecu and

Anagnostou (2002) but extended to account for the space-borne sensor resolution may be derived in

terms of a functional that providers an optimal estimation through its minimization:

1I_TM-fG(A)TBA(A,'KQ,'XR)dA!B W;_ T_-_ G(A)TBA(A''_Q'_R)dA
F=2\ E E

+ 2(PXAs - PIA_ 'KQ, 'XR ))T W_]a (PiA s _ PIA(XQ, XR ))



In Eq. (1), T_ is a two dimensional array of co-located brightness temperatures, E is the region

viewed by the instruments, G is _he antenna gain function, TBa is an array of brightness temperatures

calculated from radar retrievals, '_Q is an array of radar retrieved hydrometeor contents, 'XR is an

array of XR vectors and MxR is _,n a priori estimate of XR • The variable A under the integral is a

dummy variable indicating an elemental area in the sampling area E. For example, in the TRMM

retrieval problem, dA is the PR'_, footprint. In the third term ofF, P|A is the model predicted array of

PIA, PIAs is a surface return based estimate of PIA, while all variables denoted W are covariance

matrices indicating the confidence in observations and simulation models. Details regarding the

methodology of specifying the covariance matrices and the a priori estimates are given in the next

section.

To determine the set of radar profiles and associated brightness temperatures considered in (1)

in a given meteorological conte_.t, two simple rules derived from an optimality principle are used.

These rules are: 1) any two precipitation profiles located in a common passive observation footprint

must be simultaneously retrieved and 2) any two overlapping passive observations must be considered

together in (1) if there is precipitation in the overlapping region. If the simultaneous application of

these two rules leads to a formulation involving too large a number of variables to allow a solution

using the current computational resources, the functional F is separated in two or more sub-functionals

and retrievals are performed for each of them. For example, in TRMM applications we do not perform

retrievals involving more than 500 PR consecutive scans, i.e. 49x500 pixels, but reduce the problem to

sub-problems that satisfy this size requirement.

It may be noted that the Iunctional F in (1) depends only on "KR because 'XQ, i.e. the radar-

retrieved hydrometeor contents, can be determined uniquely as a function of reflectivity profiles and



XR • The large-scale optimizati( n problem associated with the minimization of functional F is

addressed using a gradient-based procedure. The minimization procedure and means of efficiently

evaluating the functional gradient are described in Grecu and Anagnostou (2002). In the next section,

we investigate the combined retr,eval technique through a simulation-based experiment.

3. Simulation results

In this section, we synthesize TRMM-like observations using cloud-resolving-model (CRM)

simulated data. Retrievals are performed from the synthetic observations and the CRM data are used

as a reference to assess the retrievals' performance. The cloud data for the simulation experiment is

derived from a simulation of Hu_-ricane Bonnie (August, 1998), performed using the Penn State/NCAR

mesoscale model MM5. MM5 employs bulk parameterizations, which constitutes a limitation in

exploring the impact of DSDs' _ ariability on retrievals, but nevertheless is one of the best options,

given that explicit microphysics schemes are extremely intensive from the computational point of

view.

The brightness temperature simulations are performed using a modified Eddington model

(Bauer et al. 1998). That is, the slant-profiles of hydrometeors corresponding to the instrument

pointing vectors are sampled from the CRM 3-D grid, and the Eddington approximation is applied.

Everything else regarding the radiative transfer calculations is the same as in Grecu and Anagnostou

(2002). The brightness tempera_ ure calculations are done at the CRM's resolution (2 kin). The DSD

intercept, N O , is generated at rardom but assuming the horizontal correlation and typical values

determined by Testud et al. (20(i0). The high-resolution brightness temperatures are convolved at

TRMM sensors' resolutions using Gaussian functions consistent with the sensors' characteristics as

specified in Kummerow et al. (1997). The sampling resolution of TRMM Microwave Imager (TMI) is
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alsoconsideredin theobservationsynthesis.ThepseudoTMI observationsaregeneratedona grid of

approximately15km in thealongtrackdirectionand9 km (4.5km for the85GHzobservations)in the

acrosstrackdirection. Theprecipitationradar(PR)observationsaregeneratedconsistentlywith

TRMM PRsamplingresolution_approximatelyona4.5km x 4.5km grid).

Thecovariancematricesandtheapriori estimates,W andMX.Rin Eq. (1), aresetthrougha

methodologysimilar to thatof GrecuandAnagnostou(2002). WXRandMXRareevaluateddirectly

from thecloudmodelsimulateddata,assumingthatthebestapriori estimateof XRis its meanoverall

valuesproducedby thecloudm_delsimulations.Variablexcis determinedasthefirst componentin

anempiricalorthogonalfunctior:03OF) decomposition. In other words, the cloud water content

profile is represented as a linear combination of orthogonal vertical profiles that are the eigenvectors of

the covariance matrix determined by all cloud water content profiles in the cloud database. The

advantage of such a representation resides in the fact that the first few eigenvalues and their associated

coefficients explain most of the _rofiles' vertical variability (in other words a more economical

representation of cloud water pr,)files is achieved). Variable Xs is simply taken as the vertical mean

ratio of snow to graupel content WpIA is set to 4.0 dB 2 as suggested by the findings of Meneghini et

al. (2000). Matrix Wa- is probably subject to the largest uncertainties of all covariance matrices. This

is because, in spite of numerous studies carried out to quantify the uncertainties associated with

radiative transfer calculations in precipitating clouds, there are still issues that need to be further

addressed. These include the modeling of the bright band (Olson et al., 2001), the quantification of the

three-dimensional effects on the polarized transfer of radiation (Roberti and Kummerow 1999),

parameterization of the effect ot precipitation small-scale variability on calculated brightness

temperatures (Hams and Foufoula-Georgiou, 2000) etc. Unfortunately, from the point of view of

quantifying the uncertainties in _'adiative transfer calculations in precipitating clouds, the existing



studies are still preliminary. We therefore consider in this experiment only the uncertainties

introduced in radiative transfer c _lculations by various parameterizations used to make the problem

better defined and computationai ly less intensive. No potentially systematic errors caused by the

bright band model (from Grecu l,.nd Anagnostou 2002), three-dimensional effects other than those

mitigated by the slant-model, raiadrop oblateness, small-scale variability, etc. are considered. Other

errors, resulting from the simplilied representation of the vertical variation of cloud water content and

ratio of snow to graupel by just l wo variables, xc and xs, are investigated and included in WT.

Additional uncorrelated, random errors with 0 mean and 1 K standard deviation (Marzano et al. 1999),

accounting for observational un( ertainty, are considered in WT.

The following scenario i; considered in the synthetic retrieval experiment. The radar and

radiometer observations are synthesized as described above. PIA estimates, as provided by a surface

reference technique are generated with the addition of errors to the actual PIA' s determined in the

radar observations' synthesis. 1 he errors are assumed to be spatially correlated with a decorrelation

distance, i.e. the distance beyond which the correlation drops below 0.5, of 30 km. Other decorrelation

distances are investigated as well and the results will be mentioned in subsequent paragraphs. The

errors in surface-return estimate_ of PIA are likely to be correlated. This is because the surface

reflectivities are correlated and a factor that causes an error (like the variation of surface wind speed,

for example) in the estimation of the rain-free surface return at a certain location and further translates

to an error in the PIA estimate i; likely to manifest itself at adjacent locations as well. The mean PIA

error is 0dB and its standard deviation is 2 dB. Only polarization corrected brightness temperatures

(PCTs, defined as 1.818Tv-0.818TH, where Tv and TH are the vertically and horizontally polarized

brightness temperatures) are co_sidered in the retrieval. The 21.3 GHz channel constitutes an

exception, because only the ve_ ically polarized brightness temperature is sensed at that frequency, and
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consequentlyPCTmaynot bederived.Thereasonfor consideringPCT's is thatthey aresomewhat

lesssensitiveto uncertaintiesin _':urfaceemissivitiesthanverticallyandhorizontallypolarized

brightnesstemperatures.Thefact thatthenumberof radiometerobservationsis reducedabouttwo

timeswhenconsideringPCT's d,_esnot constituteasignificantdeteriorationof the initial information

quality,becausethehorizontallyandverticallypolarizedbrightnesstemperaturearestronglycorrelated

andthepolarizationsignature,i._'_,thedifferencebetweenthetwo polarizationtemperatures,maynot

becorrectlyreproducedby anEcldingtonmodel(RobertiandKummerow,1999).Randomerrors,with

0 meanand2 K standarddeviati_)nwereaddedto thesyntheticbrightnesstemperatureobservationsto

accountfor randomerrorsin theradiativetransfercalculations.

Theretrievalperformanc,:,in termsof errorhistogramsfor variousretrievedvariablesaregiven

in Fig. 1. Two setsof curvesarepresentedin this figure. Onecorrespondsto radar-onlyretrievals

(symbolizedwith dashedlines), _vhiletheothercorrespondsto combinedretrievals. It is apparentin

Fig. 1thattheerrorsassociatedwith thecombinedretrievalsaresmallerthanthoseproducedby radar-

only retrievals.Thehistogramof PIA errorsfor radar-onlyretrievalsis bimodal,becausefor low PIA

valuestheanalyticalestimatefr(,mthereflectivityprofile is weighedmorethantheSRTestimate.

Thisprocedureis similar to thatemployedby theactualTRMM PRalgorithm(seeIguchiet al. 2000).

For largePIA values,theanalytical estimateweighslittle andthesolutionsubstantiallydependson the

surfacereturntechnique.ThePIA erroris smallerfor combinedretrievalsthanfor radar-only

retrievals,i.e. thenumberof retrievalswith absoluteerrorslessthan0.5dB increases,while the

numberof retrievalswith errorslargerthan0.5dB decreases.It isalsoapparentfrom Fig. 1thatthe

improvementin PIA estimationtranslatesto improvementsin No andsurfacerain estimation.

(ParameterdN is definedherea::.theratio of retrieved NOto actual NO.) In additionto improvements

in theestimationof variablesdilectedrelatedto precipitation,thecombinedtechniquealsoprovides
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estimates of the cloud water conlent, through variable xc. The error histogram of the estimated relative

to the actual Xc, i.e. the first com:_onent in an EOF representation of the cloud water content profile, is

also presented in Fig. 1. For the sake of comparison, we assume that in the absence of radiometer

observations the best estimate ot xc is its mean over the whole cloud model database. It may be noted

in Fig. 1 that the combined technique significantly improves the estimation of Xc (the relative root mean

square error decreases from 100'_, i.e. no skill relative to "climatological" estimates, to about 50%). It

should be mentioned that retriev ils with larger number of variables, i.e. more than two, to describe the

cloud water content profiles haw_ been attempted. They have not yielded better results, which suggests

that there is not enough informalion in the radiometer observations to refine the estimation of cloud

profiles through the consideratic, n of additional orthogonal functions.

In Fig.2, a qualitative representation of the retrieved surface rainfall and mean cloud water is

shown. The surface rainfall errcr and the actual cloud water are shown as well. The largest errors in

surface rainfall occur at the boundaries of the retrieval domain, which is expected since the areas close

to boundaries are poorest in radiometric information. That is, the brightness temperatures in those

areas depend on profiles not in the retrieval domain and are, consequently, not considered in the

retrievals, while the brightness t _mperatures that are considered in the retrieval only weakly depend on

the profiles close to boundaries. This indeterminacy problem does not occur in situations when the

whole precipitation domain is ir_cluded in the retrieval domain. In general, the rain errors appear to be

less than 20%, which indicates a good performance of the retrieval technique, given that the

precipitation estimation using relationships that do not account for N o's variability could lead to

errors as large as 100% (Testud et al. 2000).

The agreement between the retrieved and actual cloud water fields is also fairly good. The

retrieved field appears to be sm,_other and spatially less variable, which is a consequence of the
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resolutionof the instrument.Th;Ltis, thelower-resolution,radiometricobservationsprovidemostof

the informationin thecombinedretrievalof cloudwaterstructures.

As mentionedabove,oth_rerror structuresin SRTPIA estimatesareconsideredaswell. It

appearsthat thedifferencebetweencombinedandradar-onlyretrievalsis negligiblefrom the

precipitationpoint of view whenthedecorrelationdistanceof theSRTPIA errorsdecreasesbelow 15

km. This suggeststhattheradiometerinformationis insufficient in suchcases,giventhelow

resolutionof theradiometerobservationsmostrelatedto PIA, to augmentthe informationprovidedby

thesurfacereturntechnique.H(,wever,theestimatesof thecloudwatercontentarestill significantly

betterthanclimatologicalestim_tes(50%-60%errors). Basedon this,it maybestatedthat combined

retrievalsarenoticeablysuperiorfrom theprecipitationpoint of view to radar-onlyretrievalswhenthe

errorsof PIA estimatesexhibitcorrelationdistancessimilarto theradiometer'slow-frequencychannel

resolution.Also, thecombinedretrievalsarealwaysmorecompleteandconsistentwith all

observations.Thenextsection_sdevotedto theapplicationof thecombinedtechniqueto data

originatingfrom airborneobservations.

4. Application to airborne data

In this section, airborne _adar and radiometer observations are aggregated at the TRMM

sensors' resolutions, the retriewd technique is applied to the synthesized data and the retrievals are

analyzed. Airborne data present the advantage that, while being real and providing opportunities for

more conclusive tests, they are Jree of some of the complications caused by different resolutions and

sampling strategies specific to real satellite observations. Combined retrievals from active and passive

airborne observations were inw stigated in various studies in the past. However, their conclusions may

not be directly extrapolated to satellite data because the resolution of observations at frequencies where
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absorptiondominatesis low andthismaypotentiallyaffectthequalityof information. Thisjustifies

investigationssuchastheonein thissection.

Thedataoriginatefrom theFourthConvectionandMoistureExperiment(CAMEX-4) which

tookplacein Floridain August- September2001. In particular,datacollectedby theER-2Doppler

Radar(EDOP)andtheAdvancedMultichannelMicrowavePrecipitationRadiometer(AMPR) are

used.Detailsontheseinstrumertsmaybefoundin Heymsfieldet al. (1996)andSpenceret al. (1994).

Observationsfrom theAirborneRainMappingRadar(ARMAR) coincidentwith AMPR observations

wouldprobablyhavebeenmoresuitablefor investigationof thecombinedtechnique,givenARMAR's

similarity to theTRMM PR(Duden et al. 1994). However,no flight legscontainingARMAR and

AMPR coincidentdatathatare1,_ngenoughto providesufficientobservationsfor ameaningful

analysisattheTRMM resolutiol_havebeenfound. Consequently,we resortto EDOPandAMPR

coincidentdata.

Fig. 3 showsarepresent_ttionof thedatacollectedby EDOPandAMPR duringaflight legon

September18,2001(HurricaneErin). Superimposedon theoriginal AMPR observationsarethe

TRMM like synthesizedobservations.It maybenotedin Fig. 3 thatthe informationprovidedby the

10and19GHzchannelsis significantlydegradedatTRMM resolution.Thehighfrequencychannels

(37and85GHz)providehigh-r_solutionobservations,but therelationshipsbetweenthese

observationsandprecipitationae weakerthanthoseatlower frequencies.TheEDOPobservationsare

re-sampledatPRresolutionandusedin theretrievalsalongwith theTRMM-like passiveobservations

synthesizedfrom theAMPR dala. The SRTPIAsarenot consideredasinformationin theretrievals

for two reasons.First, thePIA atEDOP's frequency(9.6GHz) is significantlylower thanthatat 13.8

GHz,which is thefrequencyconsideredin theprevioussectionandalsotheTRMM PR'sfrequency.

This makestheEDOP'sSRTb_sedestimatesof PIA lessreliablethanTRMM PR's andtheir valueof
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limited utility for low intensityn,mfall. Second,theSRTPIA estimatesmaybeusedindependently(at

leastfor largeattenuationprofile0 for evaluationof thecombinedretrievals. Consequently,wechoose

to usetheSRTPIAs to interpretLherealismof thecombinedretrievals.

Fig. 4 containsarepreser_tationof theretrievedbrightnesstemperaturesatthe initial AMPR

resolution.Resultsshowthatthecombinedformulationallowsfor theretrievalof brightness

temperaturesatresolutionshigherthanthatof theobservations.This is becausethehigh-resolution

radarobservationsareavailable.Theagreementbetweentheobservedbrightnesstemperaturesandthe

onesretrievedthroughthecombnedtechniquedemonstratestheconsistencyof radarandradiometer

observationsaswell asthatof themodelsusedin theretrieval. Someoscillations,which aremost

likely theeffectof ill conditioni1_g(moreindependentunknownsthanindependentobservations),are

apparent,especiallyin areaswith low intensityrainfall. Whenthecloudwatercontentis specifiedasa

variablefor eachprofile consideredin theretrieval,someunrealisticestimatesof thisvariableare

obtained.Thatis, highercloudwatercontentsthanthoseexpectedareretrievedin somelow intensity

rain areas,while in otherhigh intensityrainfall areaszerocloudwatercontentis retrieved. This

suggeststhatthevariability in thesurfacewind speedandtheuncertaintiesin radiativetransfer

modelingmighthavealargeref'ect onretrievalsthanexpectedbasedon thesyntheticretrieval

experiment.Consequently,a si1_glecloudvariablefor all profiles is consideredin theretrieval.

Presentedin Fig. 5arewtriousretrievedvariablesasafunctionof time. TheseincludethePIA,

theratioof retrievedN; to areferencevalue,namely N; =0.08cm-4,andthevertically integrated

liquid (VIL) content. PIA estimatesfrom theSRT arealsopresentedin thefigure. It maybenoted

that theretrievedPIAs arein fairly goodagreementwith theSRTestimates,especiallyin theareas

characterizedby largeattenuation.TheSRTestimatesaredeterminedby consideringa singlevalue

(constantfor thewholeleg) of thesurfacereturnin rain freeareas.A moreflexible andadaptiveSRT
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estimationsuchasthatemployec:in TRMM PRalgorithm(Meneghiniet al. 2000)is notconsideredfor

EDOPdata,giventheabsenceol off-nadirinformation. Thesurfacereturnvariessignificantlyasa

functionof thesurfacewind speed,whichmakesthePIA estimationsubjectto errorsin caseswith

strongvariationsin surfacewind speed.Forthe investigatedcase,we settherain freesurfacereturn

basedontheobservationsbeforethe 15:55andafterl 8:26whichcorrespondto rain freeareas.This

leadsto anoverestimationof SR1"PIA neartheeyedueto increasedsurfacewind speedthatcausesa

reductionin thesurfacereturn..klternatively, wecouldsettherain freesurfacereturnbasedon the

EDOPobservationsin theeye,but this wouldnot leadto overallmoreaccurateSRTestimates.This

dilemmaconcerningtheoptimalstrategyof determiningtherain freesurfacereturnillustratestheneed

for additionalinformationsuchastheradiometricobservations.Also, theSRTPIA estimatesin Fig.5

suggestthatthereis a spatialco_relationin SRTPIA errors(theymaybeconsistentlypositiveor

negativeasafunctionof surfacewind speed,which is alsoavariablethatexhibitsspatialcorrelation).

This makestheassumptionsconcerningtheSRTPIA errorsconsideredin theprevioussection

meaningful.It maybe inferredfromFig. 5 thatthePIA derivedby thecombinedtechniqueis more

realisticthatthe SRTPIA in areasof low intensityrainfall becauseit doesnot associatelarge

attenuationwith low reflectivit_yprofiles.

TheretrievedNo is characterizedby largevariationsthatareconsistent,at leastfrom therange

point of view,with theresultso Testudet al. (2000). It is apparent,though,thatin low intensity

rainfall its valuestendto beunrealisticallyhigh. This tendencyis probablyaconsequenceof thefact

thatthealgorithmattributesdifferencesbetweenpredictedandobservedbrightnesstemperaturemainly

to variationsin thedropsizedistributionanddoesnotaccountfor otherfactorssuchasthevariability

in thesurfaceemissivity,horizontalvariability of cloudwatercontent,etc. But asalreadymentioned

inclusionof morevariablesin theformulationwouldmaketheproblemmoreill-posed. Hopefully,
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progressin theunderstandingandsimulationof precipitationprocesseswill allow morerealistic

parameterizationsandmoreadaptiveretrievals.A positivefactis thattheunrealistic,largevaluesof

No in theeyedonothavemuchimpacton theoverall rainfall estimationgiventhatthereflectivity

profilescorrespondingto thesevaluesarecharacterizedby very low reflectivity factors.

Presentedalsoin Fig. 5 i_thevertically integratedliquid content(VIL) asfunction of time.

This variableappearsto bestronglycorrelatedwith thePIA andthe 10GHz brightnesstemperature.

This resultsfrom both thePIA andthe 10GHz brightnesstemperaturebeingsensitivemainly to

absorption(andemissiongivenKirkchhoff's law; Stephens1994)by raindropsin theatmospheric

columnsampledby theradaror :.-adiometer.The correlationbetweenthePIA andtheVIL suggests

thaterrorsin estimatingthePIA directlytranslateto errorsin VIL andadvocatestheuseof radiometric

informationasmeansof reducingtheuncertaintyin PIA estimatesandthereforein precipitation

estimates.

To investigatethegenertlity of theretrievalanalysis,asecondflight leg onSeptember23,

2001(HurricaneHumberto)is considered.TheEDOPandAMPR data(both initial andlow

resolution)areshownin Fig. 6. Presentedin Fig. 7 aretheretrievedandobservedbrightness

temperaturesatthe initial AMPRresolution.Theagreementbetweenretrievedandobservedvaluesis

similar to thatnotedin thepreviouscase.Shownin Fig. 8aretheretrievedPIA, N;, andVIL. The

retrievedvaluesindicateconsistencywith theconclusionsderivedfrom the analysisof theSeptember

10data.That is, theagreementbetweenretrievedandSRTPIAs is good,especiallyfor largevalues,

NOexhibitsarangeandvariatilm similar to those noted before, and the VIL is strongly correlated with

the PIA and the 10 GHz brightness temperature.

affected by variations in the sur"ace wind speed.

is apparent in N o

Also, the lower-valued SRT PIA estimates seem to be

Unlike the previous analysis, a quite systematic trend

values. The '_l_ values tend to decrease with the range from the eye wall, although
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the fluctuations are still large. Tiffs trend may be the consequence of increasing predominance of

stratiform processes conducive t_ larger drops away from the eye wall.

The analysis of the airbol ne observations suggests the feasibility of the retrieval technique's

application to real data. Although some artifacts are apparent, such as unrealistic N o estimates in very

low intensity precipitation areas, the technique provides framework for introducing additional

information to mitigate uncertair ties in PIA estimates. In the next chapter, an illustration of the

technique's applicability to TRMM data is provided.

5. Application to TRMM data

The potential of the retrieval technique in satellite rain estimation is illustrated by its

application to TRMM data. Several cases were considered, but results from only one case are

presented here, given that no notable differences from case to case were observed. Nevertheless, a

considerably larger number of cases must be analyzed for a comprehensive assessment of the

technique's performance in satellite applications. Such an analysis is in progress, and the results will

be reported separately. In this section only the technique's feasibility and the consistency of its

behavior relative to the results o1"previous sections are investigated.

The radar algorithm used in the retrieval is fully consistent with the TRMM PR algorithm. It

uses the same vertical structure _:haracterized by five nodes that describe the hydrometeor phase and

the vertical variability in reflecti vity vs. attenuation and reflectivity vs. precipitation relationships

(Iguchi et al. 2000). The rain type classification is also the same used by TRMM PR algorithm. The

TRMM PR algorithm updates the reflectivity-precipitation relationships as a function of a parameter

defined as (Iguchi et al. 2000)
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E _

1 - 1013P1A°tlo

r_

0.2 ln(10)[3I c_(s) Z_m(s)ds
0

(2)

where PIAe is the imposed ("finz_l value") value of PIA, or(s) and [3 are the multiplicative coefficient

and the exponent in range-dependent attenuation-reflectivity relationships, s is the range, rs is the range

corresponding to the surface and Zm(s) is the attenuated reflectivity at range s. PIAe is determined

based on a bayesian formulation from the Hitschfeld - Bordan PIA, corresponding to an analytical

solution of the radar equation, aud the SRT PIA (Iguchi et al. 2000).

In our approach, e is determined iteratively from radiometer observations. Specifically,

E = 8N; (L-13), where 8N; is the ratio of the actual N o to the reference No used to derive the

attenuation-reflectivity relationships. The values of E and, consequently, the simulated TMI brightness

temperatures are iteratively adjt:sted until a minimum of the functional in (1) is attained. Our estimates

differ from the TRMM PR official estimates only in the way e is specified, which facilitates an

objective analysis of the impact of using radiometric information in the TRMM PR algorithm. The

consistency of TRMM PR parameterizations with those derived to predict absorption, emission and

scattering properties at TRMM I'MI's frequencies as a function of hydrometeor contents is achieved

through the use of equivalent normalized gamma DSDs (Ferreira et al. 2001). That is, the normalized

gamma DSDs that would yield the same relationships as those used by the TRMM PR algorithm are

determined and used further to express the scattering property variables as functions of hydrometeor

contents.

The application presented in this section is based on data from a TRMM overpass of Hurricane

Bonnie on 22 August 1998. From TMI, only the 10 GHz brightness temperatures are used in the

retrieval. Although strongly c(,rrelated with the actual observations, the 19 to 37 GHz simulated
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brightnesstemperaturesappeart(,beslightlybiased.Becausetheformulationin (1) appliesonly to

modelsthatdonotexhibit systen_aticerrors,wedecidedto not includethe 19to 37GHz information

in theretrieval. Thenatureof theobservedbiasisunderinvestigation.Also the 10GHz and85GHz

piecesof informationarealmostcomplementary,inasmuchas"pure"emissionis observedat 10GHz

and"pure" scatteringis observec_at 85GHz.Thismakestheformulationseparablewhenthe 19to 37

GHzinformationisnot used.Thatis, aretrievalof N; (or e)canbeperformedbasedon 10GHz

observations,followedby aretrievalof xsbasedon 85GHzobservations.Here,theretrievalbased

only on 10GHzis presented,gi,.enthat No is thevariablethatstronglyinfluencestheprecipitation

estimatesbelowthemeltinglays:r.

Selectedretrievedparametersarepresentedin Fig. 9. Thetop left panelof this figure is a

contourplotof thePIA estimatedusingtheTRMM PRalgorithm(oneof theTRMM 2A25 products).

Shownin thetoprightpanelarethedifferencesbetweenthecombinedtechniquePIA andthe2A25

PIA. As describedabove,thedifferencesresultfrom differentEestimatesfrom thepresenttechnique

basedon radiometricobservations.As seenin thepanel,thePIA differencesbetweenthetwo

retrievalsarenot large. Theyatewithin thelimits of SRTPIAsuncertainties,butneverthelessthey

impactthevaluesof theretriev_dhydrometeorcontents.Frequencyplotsof the2A25 Eandthe

combinedretrievalEareshownin thebottomleft panelof Fig. 1. It maybenotedthat theEvalues

from thecombinedtechniqueexhibit largerdeviationsfrom 1.00thanthe2A25 values.The2A25

valuesseemto bemoreconser_ative,i.e. closerto 1.00. Thismaybean indicationof lessinformation

incorporatedby theTRMM PR algorithm,giventhatthis algorithmweighstheSRTPIA estimatesasa

function of their reliability, andwhenthereliability is smallthenominalvaluesarehighly weighted.

A representationof retrievedV [Lsvs.2A25VILs is givenin thebottomrightpanelof Fig.9. A strong

correlationbetweenthetwo typesof estimatesis noted;however,thecombinedretrievalVILs are
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systematically larger, especially for low values below (5 kg/m2). Overall, the combined retrieval

estimates are about 16% larger t|,an the 2A25 estimates. It should be mentioned that the root mean

squared difference (RMSD) betv, een 2A25 PIAs and the SRT PIAs (determined also by the TRMM

PR algorithm) is the same as the RMSD between the combined retrieval PIAs and SRT PIAs.

Therefore, although the combined method is as consistent with the SRT PIA estimates as the TRMM

PR algorithm, it produces results that are systematically different from those of 2A25 algorithm. This

is a consequence of the highly n_nlinear relationships among the variables involved in the algorithm,

and suggests that apparently sire lar retrievals may lead eventually to systematically different results.

Further, it is possible that some _f the differences between the official TMI and PR algorithm estimates

may originate in the lack of reliable PIA estimates for low intensity rainfall which may lead to

conservative PR estimates (e=l) that are not necessarily always in agreement with the actual DSDs.

Displayed in Fig. 10 are _;catter plots of observed brightness temperatures (10 and 19 GHz) vs.

brightness temperatures simulawd based on the two types of hydrometeor content estimates, namely,

the combined retrieval and the 2 __25 estimates. The differences between the simulated temperatures

and observations are reduced in :he combined retrieval case, especially at the 10 GHz (about 20%

reduction in RMSD). The 19 Gltz combined estimates also show smaller deviations (about 9%

RMSD), although the 19 GHz it formation is not used in the retrieval. This suggests that the

improvement in the 10 GHz temperature retrieval is not just a consequence of the minimization

associated with the technique but encompasses an improvement at the level of retrieved hydrometeor

contents.

Other cases we investigated gave similar results. That is, the combined precipitation estimates

are higher than the 2A25 estimates by about 10% to 15% and the agreement between the retrieved

PIAs and SRT PIAs is similar to that between the 2A25 PIAs and SRT HAs. Also, the improvement
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in the 10 GHz temperature predk tion translates to a somewhat smaller improvement in the 19 GHz

temperature prediction. However, it is premature to state whether the application of the combined

technique to TRMM data will consistently yield larger precipitation estimates. Considerably larger

data sets are needed to address this issue. Moreover, the consistency of radiative transfer calculations

with real observations should be more comprehensively investigated, and the retrieved variables must

be evaluated with respect to ind_ pendent observations, e.g. ground radar observations, disdrometer

data, etc..

6. Conclusions

A method for estimating precipitation profiles from multifrequency, multiresolution, active and

passive microwave observations, is formulated and investigated in this paper. The method is based on

physical models that simulate, starting from active observations and a set of free parameters, the

passive observations. The free i_arameters are determined such that an agreement between simulated

and observed variables as well as agreement between retrieved and expected properties is achieved.

The method is tested using syn! hetic and airborne data and an illustration regarding its possible

application to satellite data is provided.

The synthetic retrieval experiment uses cloud resolving model data to generate passive and

active observations characterized by TRMM instruments' resolutions and frequencies. Retrievals are

performed and analyzed. Results show that the inclusion of passive information in retrievals may

reduce the uncertainties in PIA estimates. Improvements in PIA estimates translate to improvements

in precipitation estimates. That is because the PIA estimates strongly influence the precipitation

retrieval not only through atter uation-corrected profiles of reflectivity but also through the

relationships used to relate the corrected profiles to precipitation. Even though the microwave sensor

22



passiveinformationis charactem;edby low resolution,it isnonethelesseffectivein mitigatingerrorsin

SRTPIA estimatesin somesituations.WhenSRTPIA estimatesareaffectedby purelyrandomerrors,

thepassiveinformationhaslittle impactonprecipitationretrievals.WhentheseSRTPIA errorsare

correlatedondistanceson theorderof magnitudeof the low-frequencychannels'resolutions,the

benefitof passiveobservationsif evident.

Theanalysisof airbornedatasuggeststhat SRTPIA errorsarenotpurelyrandombutexhibit

somespatialcorrelation.To maketheanalysisconsistentwith thesyntheticretrievalexperimentand

relevantfor satelliteapplicationstheairbornedataareaggregatedattheTRMM instruments'

resolutions.Retrievalsshowthetechnique'sability to restoretheradiometricinformationat theinitial

(airborneinstrument's)resolutioa.TheSRTinformationis not includedin theretrieval (givenits

informationpoorcontentat thet!DOP's frequencyandtheneedfor validationof retrievedvariables)

but is usedto evaluatethecombinedretrievalPIA. Resultsindicatea goodagreementof retrieved

PIAswith SRTPIAs. Althoughsomeartifactsin estimatedparametersareapparent,refinedand

additionalparameterizationsandadditionalconstraintsshouldhelpto eliminatethese.

Thetechnique'sapplicat:onto TRMM datashowsits feasibilitywhendealingwith realsatellite

observations.Althoughmoredetailedinvestigationsareto beperformedto reachdefiniteconclusions,

theresultsareencouraging.Valuesof retrievedparametersaresimilar to thosederivedfrom the

TRMM PR algorithmin termsof somevariables,whileothersaredifferent. Thesedifferencesmaybe

systematicandcausedexclusivelyby thedifferentinformationcontentusedby thetwo algorithmsand

thenonlinearrelationshipsamongthevariablesinvolvedin retrievals.Thatis, theSRTPIA seemto

haveaweakerinfluenceon retrievedparametersin theTRMM PRalgorithmthanradiometric

informationhasin thecombinedtechnique.As aresult,in this studytheprecipitationestimatesfrom
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the combined retrieval are larger than those from the TRMM PR. Whether the combined retrievals

lead in general to larger estimate:_ than the PR-only estimates remains to be investigated.

Future work must be don_ to analyze the technique's utility and performance in satellite

applications. As already stated this implies applications to a large set of real TRMM observations and

comparison of the results with 2.\25 products. Also data from field experiments should be included in

the analysis. These data are partLcularly useful because they may provide additional insights related to

the validity of different estimate_; such as the DSD intercept, the cloud water content, and the mixed

hydrometeor properties. For ex_mple, disdrometer data may characterize the range of expected DSD

parameters for given meteorolof4ical contexts. Ground radar data and kinematic retrievals could be

used to estimate the cloud water fields, while multiple frequency radar observations of mixed-phase

hydrometeors may better depict their structure. All these elements considered together may provide a

comprehensive analysis of the technique formulated and preliminarily investigated in this study for the

purpose of microwave rain estimation applications.
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Figure 9.

Synthetic retrievals Frequency plots of various errors for combined (continuous line) and

radar only (broken line) retrievals. Included are (from top to bottom right to left): the

PIA, ratio of retrie_ ed to actual N;, cloud water and surface rain intensity.

Synthetic retrievals From top to bottom, right to left: rainfall retrieved by combined

technique, rainfall _:rror, retrieved cloud water content and actual cloud water content.

EDOP and AMPR ._)bservations and estimates from a September 10, 2001 flight leg.

From top to bottom: Observed EDOP reflectivity; Observed (continuous line) and

TRMM-like synthesized (broken line) 10GHz brightness temperatures; Observed and

synthesized 19 GH_'_ brightness temperatures; Observed and synthesized 37 GHz

brightness temperatures; Observed and synthesized 85 GHz brightness temperatures.

Combined retrieval from airborne data for September 10, 2001. Actual AMPR brightness

temperatures (conti auous line) and retrieved brightness temperatures (stars).

Combined retrieval from airborne data for September 10, 2001. From top to bottom:

Retrieved PIA and ';RT PIA (stars); Retrieved N o ; Retrieved VIL.

Same as Fig. 3, but for September 23, 2001.

Same as Fig. 4, but for September 23, 2001.

Same as Fig. 5, but for September 23, 2001.

Combined retrieval from TRMM data for August 22, 1998. From top to bottom left to

right: 2A25 retrieved PIA; differences between combined retrieval PIA and 2A25 PIA;

frequency plots of ¢:ombined retrieval and 2A25 c; combined retrieval VIL vs. 2A25 VIL

scatter plot.
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Figure10 Combinedretrieval fromTRMM datafor August22, 1998. Observedvs. combined

algorithmandobservedvs.2A25-basedbrightnesstemperatures.Includedarethe 10and

19GHzbrightnesstemperatures.
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RETRIEVAL OF PRECIPITATION PROFILES FROM MULTIRESOLUTION,

MULTIFREQUENCY, ACTIVE AND PASSIVE MICROWAVE OBSERVATIONS

Mircea Grecu, Emmanouil N. Anagnostou, and William S. Olson

Popular Summary

Few of the important questions regarding the understanding and prediction of earth

processes can be answered without reliable estimation of global precipitation. This is why for the

last five decades, since the emergence of appropriate technology, precipitation estimation at scales
on the order of hundred kilometers has been a constant topic of interest for scientists and engineers.

Ground instruments, given limitations in terms of area coverage, can provide only a limited portion

of the big picture concerning 1he precipitation that we need to analyze and visualize. In these
circumstances, considerable effort has been continuously devoted to the development and

application of technologies that allow precipitation monitoring from space. The physics principle

used to monitor the precipitation from space is simple: every object in the universe emits, absorbs

and scatters radiant energy. While humans cannot visually detect the radiation emitted, absorbed,

and scattered by raindrops or many other natural objects, they have devised instruments that can do

that. Such instruments, called radiometers, were placed on artificial satellites to measure various

portions of the energy emitted, absorbed and scattered by atmospheric particles (including

raindrops) and the Earth Surface. The Tropical Rainfall Measuring Mission (TRMM) satellite is

equipped with a radiometer called the TRMM Microwave Imager destined to provide observations

for precipitation estimation.

The challenges in precipitation estimation from TMI observations originate from the fact

that each individual observation gauges the energetic interaction of precipitation particles with

radiant energy in very large al mospheric volumes. These volumes correspond to cylinders

vertically extending from the earth surface to the top of the atmosphere and having the base of

hundred of squared kilometers. The distribution of precipitation particles as well as their sizes vary

considerably in these volumes, which makes difficult the determination of one-to-one relationships

between TMI observations and the precipitation amounts. Additional information, derived from

theoretical models and independent practical observations, is usually employed to develop

algorithms that provide such relationships. To facilitate the development of TMI precipitation

estimation algorithms, another instrument called the Precipitation Radar (PR) was devised and

placed on the TRMM satellite. The PR does not rely on natural sources of energy to detect the

presence of rain particle in its sampling volumes. Instead, it sends energy pulses and measures the

energy returned by particles in its observation volumes. The PR sampling volumes are

significantly smaller than TMI's and correspond to cylinders of 250 m height and approximately 5

km radius. Since the main back scatterers in these volumes are precipitation particles, the energy

returned and measured by the PR may be used to estimate the precipitation. Given its small

sampling volumes, the PR provides information considerably easier to translate to reliable

precipitation estimates.

Although the PR information is usually incorporated in TMI-based precipitation estimation

indirectly, through the refinement of the hypotheses and models supporting the estimation

algorithm, a direct use of PR observations in TMI algorithms is possible. Or, more generally,



methodologies for precipitation estimation from PR and TMI observations may be developed. This

study investigates such a methodology. The methodology is based on a procedure that adaptively

changes based on TMI observations some assumptions, i.e. numerical values, in the PR estimation

algorithm.
The methodology is in vestigated using simulated data, and airborne and TRMM

observations. A numerical model able to simulate cloud and precipitation dynamics is used to

generate precipitation and oth_r fields on which the TRMM observations depend. Other models

that quantitatively describe the interaction of precipitation particles with various sources of radiant

energy are used to synthesize TRMM-Iike observations. The combined methodology is applied to

the artificially generated data and the estimated precipitation fields are compared to those used in

the synthesis. Results show advantages of using the combined methodology. The airborne data are

provided by instruments that are similar in principle to those aboard TRMM, but different in terms

of the atmospheric volumes they sample. In this sense, the airborne radiometer and precipitation

radar provide significantly better resolution data. The airborne data are degraded to the satellite

data resolution and the combined methodology is applied to the low-resolution data. The analysis

of results indicates a good ability of the combined technique to use low-resolution information to

improve the precipitation estimates from high-resolution information. The methodology's

application to TRMM data reveals its feasibility in dealing with real satellite data.


